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ABSTRACT 

Advances in computational ability have produced new software, such as Mplus 7 

(Muthén & Muthén, 2011) and IRTPRO 3 (Cai, Thissen, & du Toit, 2015), which can estimate 

multidimensional item parameters and examinee abilities. Due to its nascence, little research has 

been done on the ability of IRTPRO 3 to estimate multidimensional item parameters and 

examinee abilities in comparison to other available software. This study investigates the 

capability of Mplus 7 and IRTPRO 3 to recover multidimensional item parameter and examinee 

ability levels under different conditions, including estimation techniques, test lengths, sample 

sizes, correlations and test structures. The results show that certain estimation techniques 

available in each software package work well under the given conditions. There are, however, 

some instances where each estimation techniques encountered challenges. Practitioners should 

take into consideration the test model and the information needed when selecting the most 

appropriate software and estimation technique.  
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1 THE PROBLEM 

Testing has been and will always be an integral part of the world of education. There are 

numerous approaches that attempt to take information from a test and convert it to information 

that can be used to understand student ability. The advancements in technology have led to the 

development of computational techniques and software that can turn test information into ability 

information. The increase in computation techniques first benefited the field of classical test 

theory (CTT) by making calculations, such as point biserial correlation coefficient and item 

discrimination indices, easier. Computational advances continued to benefit the area of item 

response theory (IRT) specifically, unidimensional item response theory (UIRT). Programs such 

as BILOG-MG3 (Zimowski, Muraki, Mislevy, & Bock, 2002) and WINSTEP (Linacre, 2010) 

were developed to help researchers more accurately model examinee ability. Finally, 

computational advances improved enough to benefit multidimensional item response theory 

(MIRT). New software, such as Mplus 7 (Muthén & Muthén, 2011), flexMIRT (Cai & Wirth, 

2013) and IRTPRO 3 (Cai, Thissen, & du Toit, 2015a) have been developed and allow for 

estimation of MIRT models.  

The increase in technology has let to numerous choices when it comes to estimating 

multidimensional models. It is important for educational professionals to understand the 

differences among the available software. Equally important is the understanding of how 

accurately the software can estimate models, the default settings, and model estimation 

techniques the software employs. Both IRTPRO 3 and Mplus 7 approach multidimensional 

models in a different fashion. IRTPRO 3 approaches models from the item response theory 

framework while Mplus 7 approaches models from the factor analysis framework.  
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Research Questions  

Given the new techniques available in multidimensional test modeling and the necessity 

to make sure software can estimate item parameters and examine abilities even in the most 

complex structure, this study will answer the following questions: (1) How do Mplus 7 and 

IRTPRO 3 differ in their estimation techniques? (2) How do Mplus 7 and IRTPRO 3 compare in 

the recovery of multidimensional item parameter estimates under differing conditions?, and (3) 

How do Mplus 7 and IRTPRO 3 compare in the recovery of examinee ability estimates under 

differing conditions?  

Significance 

There have been multiple studies that investigated the use of MIRT software such as 

Mplus 7, flexMIRT, and TESTFACT (Wilson, Wood & Gibbons, 1991). Many of these studies 

incorporated a variety of simulation conditions, including changes in the number of examinees, 

changes in the size of the correlation between dimensions, and changes in the number of items 

tested. Many of these studies though, have focused on the two-dimensional test structure. In 

addition, there has been a lack of research on the estimation techniques contained in IRTPRO 3 

because of the nascence of the program. An article by Han and Paek (2014) looked at the ability 

of IRTPRO 3 and Mplus 7 to recover item parameters, however, the authors did not compare the 

capability of the programs to estimate examinee ability nor did the study vary simulation 

conditions. The study only evaluated four different multidimensional test structures and 

simulated data for 3,000 examinees on a 30-item test.  
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The present study will include an investigation of the ability of each type of software to 

recover examinee ability as well as expand the number of simulation conditions to inclusively 

assess each software’s estimation abilities. Additionally, previous studies have focused on theory 

and not on practitioners. This study takes a unique perspective in that it focuses on practitioners 

who might want to include psychometric properties in their test construction yet do not have the 

resources for a full psychometric analysis. These practitioners include school districts and large 

schools that might want to start a small psychometric or test development department in order to 

create common district or school level assessment. Additionally, those working in credentialing, 

licensing and other types of certification granting organizations might also benefit from the 

results of this study. 
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2 REVIEW OF THE LITERATURE 

IRT is a method used to ascertain an examinee’s ability level and uses item parameters to 

estimate ability levels. IRT is different from CTT in a variety of ways.  The first difference is 

that CTT is both test dependent and sample dependent. Test dependency means that an 

examinee’s ability is related to the difficulty of the test. For example, on an easy test, an 

examinee’s ability might appear high and on a difficult test, their ability might appear low. CTT 

is also sample dependent and IRT is not. Sample dependency means that the test scores are 

meaningful when the examinee who takes the test is similar to the population for which the test 

was made. In item response theory, item parameters and examinee abilities estimates do not 

depend on each other, as they do in CTT.  

Unidimensional Item Response Theory 

 IRT postulates that an examinee’s ability can be explained by underlying traits. UIRT 

assumes that there is only one underlying trait that explains the probability of the correct answer 

given the item parameters. For example, a math test is only testing math ability; it is not also 

testing reading or science ability. Another assumption of item response models is that ability and 

probability of a correct response is a monotonically increasing relationship. In addition, UIRT 

assumes local independence. The assumption of local independence means that no item can 

affect another item. For instance, an examinees response on question 12 does not affect their 

response on question 17.  

IRT models are written as probabilistic functions where the probability of correctly 

answering a question is a function of the examinee’s ability level, item discrimination, item 

difficulty and a guessing parameter. The general dichotomous UIRT model is shown below 
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where θ is the examinee’s ability, a is the item discrimination, b is the items difficulty and c is 

the pseudo guessing parameter.  

𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) = 𝑐𝑖 + (1 − 𝑐𝑖)
𝑒

𝑎𝑖(𝜃𝑗−𝑏𝑖)

1+𝑒
𝑎𝑖(𝜃𝑗−𝑏𝑖)      (1) 

The equation shown above is often referred to as the three-parameter logistic model 

(3PL). The two-parameter logic model (2PL) is a special case of the 3PL model where c = 0 and 

the one-parameter logistic model (1PL) is the simplest of UIRT models where c = 0 and a = 1.  

There are a few extensions of these three basic UIRT models including polytomous 

response models. The polytomous item response model handles items that can take on more than 

two values. Polytomous models include one, two, or three parameters models as well as the 

rating scale model, the partial credit model and the graded response model.  

Multidimensional Item Response Theory 

Multidimensional item response theory (MIRT) is an extension of UIRT. Where UIRT 

assumes unidimensionality, MIRT does not.  MIRT addresses the assumption of local 

independence in the basic IRT models.  These models account to the fact that items can test more 

than one ability or trait. Multidimensional models can separate the underlying abilities and, 

theoretically, there is no limit to the number of abilities that can be assessed. 

Researchers started working in the late 1970s and early 1980s to develop MIRT models. 

Before MIRT models were introduced, scientists first had to conceptualize them. Lord and 

Novick (1968) worked on conceptualizing and developing MIRT models. Although never 

coming up with a full model, Lord and Novick conceptualized MIRT including latent space and 

local independence (Reckase, 2009). Samejima also conceptualized and tried to model MIRT. 

Her model used continuous responses and not dichotomous responses (Reckase, 2009). 
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Unfortunately, Samejima’s model was not widely employed and only found use in one 

application.  

After models were conceptualized, researchers started developing mathematical MIRT 

models. Muliak (1972) came up with a model that changed as the number of dimensions 

increased. When the probability of a correct response was fixed, the values of the exponents in 

the equation would change as the number of dimensions increased (Reckase, 2009). Muliak’s 

model led the way to the models of Sympson (Sympson, 1978) and Whitely (Whitely, 1980). 

Both of these research scientists proposed a model in which the scaling of the item parameters 

changed with the change in the number of dimensions. Nonetheless, none of the aforementioned 

models were full MIRT models because the probability of a response changed when the number 

of dimensions changed. Finally, Reckase and McKinley (1991) proposed a model in which the 

probability of a correct response stayed the same and did not increase or decrease with the 

number of dimensions. 

It was through the research of Reckase and McKinley (1991) that the MIRT model that is 

often used today was developed. Currently there are two types of MIRT models, the 

compensatory and the noncompensatory model. There are also MIRT polytomous models, 

graded response models, and partial credit models (De Ajaya 2013; Reckase 2009).  

 

  Compensatory model. The basic MIRT equation relates the probability of an examinee 

correctly answering an item to the examinee’s ability level. The compensatory models are as 

follows; where θ is a vector of abilities, a is a vector of item discrimination parameters and b is 

the difficulty term. 
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𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖) =
𝑒

𝑎𝑖(𝜃𝑗
′−𝑏𝑖)

1+𝑒
𝑎𝑖(𝜃𝑗

′ −𝑏𝑖)
         (2) 

  The compensatory model allows an examinees ability in one area to compensate for the 

ability in another area. This model features the additive property of logit. For example, if a 

student has high algebra ability, that might compensate for lower geometry ability. Another way 

to express the compensatory model is in slope intercept form were di is t equal to –aibi.  

𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖, 𝑑𝑖) =
𝑒

𝑎𝑖𝜃𝑗
′+𝑑𝑖

1+𝑒
𝑎𝑖𝜃𝑗

′+𝑑𝑖
      (3) 

In the compensatory model, each ability dimension has a separate a parameter for the 

item, yet, there is only one d parameter. Using a two-dimensional model as an example, the 

graphical representation an examinee correctly answering a question is a function of the 

difference between the items i's location and the examinee j's ability on the first dimension and 

items i's location and the examinee j's ability on the second dimension. Instead of producing an 

item characteristic curve as in the case of UIRT, MIRT models produce an item characteristic 

surface (ICS). For the two-dimensional model, the axes of the ICS are θ1, θ2, and the probability 

of a correct response. Figures 1 and 2 show the ICS for two compensatory items. 
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Figure 1. Compensatory ICS a1 = 1.5, a2 = 1.5 d = 1.5 

 

 

Figure 2. Compensatory ICS a1 = 0.5, a2 = 2.5 d = 0.5 

 

Compensatory multidimensional models can also incorporate discrimination and 

difficulty. These concepts are similar to what is encountered in UIRT; however, the added 

dimensions make it a more intricate model. As described previously, a is a vectors of slopes for 

the item where there is one slope per dimension assessed. Aggregating information about the a 

parameter for all dimensions assessed produces the multidimensional discrimination parameter 

(MDISC) where m is the number of dimensions. MDISC can also be used to calculate 

multidimensional item difficulty (MDIFF). MDIFF takes into account the multiple a parameters 

that are available for a given item and uses them to calculate the item’s difficulty. Both MDISC 

and MDIFF are interpreted in a similar fashion as the a and b UIRT parameters. 

MDISC =  √∑ 𝑎𝑣
2𝑚

𝑣=1         (4) 
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MDIFF =
−𝑑

√∑ 𝑎𝑣
2𝑚

𝑣=1

        (5) 

Noncompensatory model. The noncompensatory model does not allow the ability in one 

area to compensate for the ability in another area. The noncompensatory model features the 

multiplicative property of logit. For example, a student’s high math ability, might not effect 

reading comprehension at all. In the noncompensatory model, each dimension will have a 

separate a value and b value and a separate probability of a correct response. The overall 

probability of correctly answering the question is the product of the two separate probabilities. 

The probability of correctly responding to an item is given in the equation below. 

Noncompensatory models also produce ICS. Figures 3 and 4 show two ICS from 

noncompensatory MIRT items. 

𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) = 𝑐𝑖(1 + 𝑐𝑖) ∏𝑚
𝑚=1

𝑒
𝑎𝑖𝑚(𝜃𝑗𝑚−𝑏𝑖𝑚)

1+𝑒
𝑎𝑖𝑚(𝜃𝑗𝑚−𝑏𝑖𝑚)

  (6) 

 

Figure 3. Noncompensatory ICS a1 = 1.8, a2 = 1.2 b1 = -0.5, b2 = 0, c = 0 

 

-3

-1

1

3

0

0.2

0.4

0.6

0.8

1

-3
-2

-1
0

1
2

3

θ
2

P
(θ

)

θ1



 10 

 

 

 

 

Figure 4. Noncompensatory ICS a1 = 2.0, a2 = 1.5 b1 = 0.5, b2 = 1.5, c = 0 
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test multiple abilities. The entire test structure can also be a combination of the between-item 

model and the within-item model.  

Factor Analysis 

 Factor analysis (FA) is similar to IRT and is often used in the case of continuous 

underlying variables. In factor analysis, observed variables are used to identify underlying traits 

or variables. These latent variables explain how the observed variables are correlated with each 

other.  Factor analysis based on matrix algebra uses either a correlation matrix or a covariance 
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underlying latent variable is similar to the underlying ability on an IRT model and the threshold, 

τ, is similar to the IRT difficulty parameter. An examinee’s response then can be modeled by 

equation 7 and 8, where Y is the vector of latent underlying variables, Λ is a matrix of factor 

loadings, θ is the latent variable vector of ability and E is a vector of residuals. The assumptions 

of FA are that θ has a multivariate normal distribution with a mean of zero and a standard 

deviation of one, and E is multivariate normal with a mean of zero and a standard deviation of 

ψ2, where ψ2 is the diagonal matrix with positive elements (Knol & Berger 1991, Muthén 1978). 

    𝑿𝒊 {
1, 𝑖𝑓 𝒀𝑖 ≥  𝝉𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (7) 

 Y=Λθ+ E         (8) 

Item Response Theory and Factor Analysis 

 IRT and FA differ mathematically in how examinee abilities and item parameters are 

calculated as well as in their model fit statistics. For IRT, model fit is relatively straight forward 

for the 1PL model, however, it can get a bit more complicated with the 2PL and 3PL models 

(Orlando & Thissen 2003). In order to get model fit statistics for the 2PL and 3PL models, 

examinees are first sorted by ability and subgroups are formed based on the sorting. Next, the 

proportion of examinee’s correct and incorrect responses are calculated based on subgroups, and 

lastly the observed proportions are compared to the predicted responses (Bock, 1972; McKinley 

& Mills, 1985; Orlando & Thissen, 2000; Orlando & Thissen 2003; Yen, 1981). Yen (1981) 

developed a Q1 measure which first separates ability into 10 levels and then constructs a 10 x 2 

contingency table based on responses. Finally, the expected proportion is calculated from the 

model based on the mean predicted probability. Bock (1972) developed a χ2  measure similar to 

the Q1. Bock’s χ2   measure varies the number of interval and the measure uses the median 
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predicted probability as opposed to the mean. Others have also proposed χ2  measures similar to 

the ones proposed by Yen and Bock including Wright and Mead  (1977) χ2    and McKinley & 

Mills (1985) G2.  

 Orlando and Thissen (2000 and 2003) expanded on the previous IRT model fit work and 

proposed two new indices  𝑆 − 𝑋𝑖
 2 and 𝑆 − 𝐺1

2. They advise that the previous calculations are 

problematic because the degrees of freedom are hard to identify and placing examinees into 

intervals is decidedly sample dependent which therefore influences the subsequent cut points and 

the overall fit statistic. Their proposed measures are based on the observed and expected 

frequencies correct and incorrect as opposed to only ability. The expected frequencies are 

calculated using a model predicted joint likelihood distribution. The results show that the 𝑆 − 𝑋𝑖
 2 

measure could be useful in identifying model fit in a variety of IRT models including 2PL and 

3PL models (Orlando and Thissen 2003). 

  Factor analysis also has a variety of fit indices. The χ2   goodness of fit statistic compares 

the sample to the covariance matrix that was used to fit the model (Hu & Bentler 1999). This 

index is a function of sample size and therefore produces results that indicate good model fit 

when the sample size is large. Indices that compare the fit of nested models are based on the 

goodness of fit statistics. One index is called the normed fit index (NFI) (James, Mulaik & Brett 

1982). This index compares the goodness of fit statistics for nested models. Bentler and Bonnett 

(1980) developed the nonnormed fit index (NNFI) which takes into account the sample size. The 

comparative fit index (CFI) is related to the NFI and also takes into consideration sample size 

thus making it good even for smaller sample sizes (Bentler 1990). Other measures of model fit 

are the Tucker Lewis index (TLI;1973) and Bollen’s (1989) incremental fir index (IFI). Taken 
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together, these indices are often referred to as incremental fit measure because they measure the 

improvement of one model over a more restricted or baseline model (Hu & Bentler 1999).  

 Another class of fit indices are absolute fit measures. These measures include the 

goodness of fit index (GFI), the adjusted goodness of fit index (AGFI), root mean residual 

(RMR), standardized root mean residual (SRMR) and the root mean square error of 

approximation (RMSEA).  Jöreskog and Sörbom’s GFI (Jöreskog & Sörbom, 1984) calculates 

the proportion of variance explained and uses the estimated population covariance. The AGFI 

(Bentler, 1983; Tanaka & Huba, 1985) adjust the GFI by adding in a component of degrees of 

freedom. The AGI also favors more parsimonious models over more complex models. Both the 

RMR (Jöreskog and Sörbom 1981) and the SRMR (Bentler 1995) measure the square root of the 

difference between the residuals of the sample covariance matrix and the hypothesized 

covariance matrix. The difference between the two indices is that the RMR reports results based 

on the scale of the variables whereas the SRMR standardizes the information. The RMSEA 

developed by Steiger (1990) compares the estimated model to the population covariance matrix. 

Confidence intervals can be calculated for the RMSEA giving it an advantage over other fit 

indices (Hooper, Couglan and Mullen, 2008; MacCallum et all 1996).  

 Estimates from IRT and FA can be formulated such that they are comparable. The 

equations for transforming IRT estimates to FA estimates are shown in equations 9 and 10 where 

λi
 is the ith row of the Λ vector, φ is the covariance matrix of factors, and the other variables have 

been defined previously (De Ayala 2013, Finch 2010, Kamata & Bauer 2008, and McDonald 

1999). 

     𝑎𝑖 =
𝜆𝑖

√(1−𝜆𝑖
` 𝜑𝜆𝑖)

        (9) 
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     𝑏𝑖 =
−𝜏𝑖

√(1−𝜆𝑖
` 𝜑𝜆𝑖)

        (10) 

Parameter Estimation  

Often times neither the examinee’s ability nor the item parameter values are known. In 

cases, such as these, it is necessary to estimate both the ability and item parameters at the same 

time. The estimation of both item parameters and examinee ability simultaneously is referred to 

as joint estimation. There are multiple methods used to estimate both item and examinee 

parameters. Often, the estimation procedure used is related to the software used for the analysis. 

As mentioned in the introduction, there are numerous software platforms available to estimate 

MIRT models. The estimation procedures elucidated in this literature review corresponded to the 

estimation procedures that are in IRTPRO 3 and Mplus 7 as these are the two programs that are 

the focus of this study. IRTPRO 3 offers the Bock-Aitkin (BA) approach with expectation 

maximizing algorithm (Bock & Aitkin, 1981) Adaptive quadrature (ADQ) (Schilling & Bock, 

2005) and Metropolis-Hastings Robbins-Monro (MHRM) (Cai, 2010a, Cai, 2010b). Mplus 7 

offers a variety of estimation techniques, however, this study will use weighted least squares 

(WLSMV), Bayes, and maximum likelihood (ML) (Muthén, 1978; Muthén, 1984). 

Bock-Aitkin. The BA approach is also known as marginal maximum likelihood 

approach. In this approach, the probability of obtaining a specific item response pattern in a 

population of examinees is calculated by “weighting the likelihood by the probability density of 

the θ vector and then integrating over the θ space” (Reckase, 2009). The formula for this 

approach is shown below where P(u = ul) is the probability of the particular score pattern for the 

entire population of examinees, L(ul|θ) is the likelihood of the particular item response pattern 

for a particular ability vector, and g(θ) is the θ probability density function. 
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𝑃(𝑢 = 𝑢𝑙) =  ∫ 𝐿(𝑢𝑙|𝜃)𝑔(𝜃)𝑑𝜃
𝜃

      (11) 

Adaptive quadrature. ADQ is an extension of the BA approach and can be used when a 

high number of dimensions are present. This approach estimates the probability of a certain 

response pattern in the population by using the multivariate density function. The ADQ approach 

does not use examinee’s ability, it utilizes quadrature points and only item parameters can be 

estimated. The equations for the ADQ probability function and the quadrature points are shown 

below where N is the number of examinees, s is the number of items, rw is the frequency of item 

response pattern w, X is the vector of values for the quadrature point, q is the number of 

quadratures, k is the dimension, and 𝐴(𝑋𝑞𝑘) relates to the height of the normal density function 

and the corresponding weight related to the height of the function (Reckase, 2009, Schilling & 

Bock, 2005). All other variables are defined previously. 

Probability function 

𝐿(𝑈) =
𝑁!

𝑟1!𝑟2!…𝑟𝑠!
𝑃(𝑢 = 𝑢1)𝑟1𝑃(𝑢 = 𝑢2)𝑟2 … 𝑃(𝑢 = 𝑢𝑠)𝑟𝑠                       (12) 

Quadrature integration 

𝑃(𝑢 = 𝑢𝑙) = ∑ … ∑ ∑ 𝐿(𝑢𝑙|𝑋)𝐴(𝑋𝑞1)𝐴(𝑋𝑞2) … 𝐴(𝑋𝑞𝑚)𝑄
𝑞1=1

𝑄
𝑞2=1

𝑄
𝑞𝑚=1     (13) 

Metropolis-Hastings Robbins-Monro. The MHRM estimation algorithm is implemented 

in a three-step process, which uses random imputations from the Metropolis-Hastings sampler 

(Wang & Nydick, 2015). First, there is stochastic imputation, next stochastic approximation and 

finally a Robbins-Monro update. The three steps are implemented for every iteration of the 

algorithm, and the algorithm stops when the model converges.  
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Weighted least squares. The WLSMV approach in Mplus 7 attempts to minimize the 

sum of squares of the difference between the vector of all latent response variables correlations 

and threshold estimated from the sample (s) and the relating population correlations (σ) (Muthén 

& Asparouhov, 2013). The weighted least squares approach uses the following equation where 

diag(W)-1 is the diagonal of the weight matrix (Muthén & Asparouhov, 2013).  

𝐹 = (𝑠 − 𝜎)′𝑑𝑖𝑎𝑔(𝑊)−1(𝑠 − 𝜎)      (14) 

 Bayes. Bayesian estimation is based on a theorem that explains the relationship between 

an event and the possible causes. In IRT, the event is item response pattern and the possible 

causes are the possible ability levels (Reckase, 2009).  Just as in ML estimation, the ability 

vectors that are chosen in Bayesian estimation are the highest possible ability vector that would 

produce the particular item response pattern. When using Bayesian estimation in Mplus 7, the 

default is to use non-informative priors. The equation for Bayesian estimation is shown below 

where ℎ(𝜃|𝑈𝑗) is the posterior probability density of θ for the given the item response pattern 

and 𝑓(𝜃) is the prior probability density function for θ. All other variables are defined in the 

preceding equations.  

ℎ(𝜃|𝑈𝑗) =
𝐿(𝑈𝑗|𝜃)𝑓(𝜃)

∫ 𝐿(𝑈𝑗|𝜃)𝑓(𝜃)𝑑𝜃𝜃

       (15) 

 

Ability Estimation 

Both IRTPRO 3 and Mplus 7 can estimate item parameters and examinee ability. 

IRTPRO 3 uses Maximum a posteriori (MAP) and expected a posteriori (EAP) while Mplus 7 

uses ML and Bayes.  
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Maximum likelihood. The ML estimation procedure takes an examinee’s response 

pattern and finds the highest ability vectors that correspond to the highest probability of selecting 

that particular response patter. Maximum likelihood estimation is the product of the probability 

of an examinee answering the first item as seen in the response pattern, times the probability of 

the examinee answering the second item as is seen in the response pattern and so on. The 

equation for ML estimation in MIRT is shown below where 𝐿(𝑈𝑗|𝜃𝑗)  is the likelihood of a 

person with ability j located at θj answering in the response pattern Uj, Q is (1-P) and u is the 

item score. All other variables are defined in the preceding equations. 

𝐿(𝑈𝑗|𝜃𝑗) =  ∏ 𝑃(𝑢𝑖𝑗|𝜃𝑗)𝑢𝑖𝑗𝑄(𝑢𝑖𝑗|𝜃𝑗)1−𝑢𝑖𝑗𝑛
𝑖=1      (16) 

Maximum a posteriori. The maximum a posteriori (MAP) estimation technique is similar 

to maximum likelihood in that the entire scoring pattern is used to produce the ability estimate. 

Be that as it may, MAP is Bayesian estimator, and ML is not. In addition to the maximum 

likelihood function, the MAP uses the assumed population distribution to estimate ability. The 

MAP is also a Bayesian estimation technique, but, it uses the assumed population distribution 

along with the likelihood function.  

Expected a posteriori. The EAP estimation technique is an extension of the MAP. Rather 

than finding the maximum point using MAP, the average value with the weighted function is 

used to calculated the ability estimate. The EAP estimation also address the issue of student 

examinees who answer all questions correctly or incorrectly. The equation for EAP is shown in 

Equation 17, the posterior standard deviation is shown in Equation 18, and variables have been 

previously defined. 
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Equation 17 EAP estimation 

𝜃𝑗 =
∑ 𝑋𝑞𝐿(𝑋𝑞)𝐴(𝑋𝑞)

𝑞
𝑞=1

∑ 𝐿(𝑋𝑞)𝐴(𝑋𝑞)
𝑞
𝑞=1

        (17) 

Equation 18 EAP posterior standard deviation 

𝑃𝑆𝐷(𝜃) = √
∑ (𝑋𝑞−𝜃𝑗̂)

2
𝐿(𝑋𝑞)𝐴(𝑋𝑞)

𝑞
𝑞=1

∑ 𝐿(𝑋𝑞)𝐴(𝑋𝑞)
𝑞
𝑞=1

       (18) 

where 

 𝐿(𝑋𝑞) =  ∏ 𝑝𝑗(𝑋𝑞)
𝑋𝑖𝑗

(1 − 𝑝𝑗(𝑋𝑞))(1−𝑥𝑖𝑗)𝑛      (19) 

 

 One noted differences between the EAP and MAP estimation technique is that the MAP 

uses an iterative approach and the EAP is based on the quadrature method. Additionally, MAP 

uses a continuous distribution and EAP uses a discrete distribution. Finally, EAP is based on the 

mean and MAP is based on the mode. 

 Previous comparison studies. As stated previous, there have been other studies that have 

investigated item parameter recovery and examinee ability recovery under various test models 

and other simulation conditions. One study was conducted by Knol and Berger (1991). In their 

study, they compared IRT to factor analysis using TESTFACT (Wilson, Wood & Gibbons, 

1984), NOHARM II (Fraser & McDonald 1988), and MAXLOG (McKinley & Reckase, 1983) 

for the IRT approach. For the factor analysis approach, they used SPSS and the iterative 

principal factor analysis (IPFA), unweighted least squares (ULS), and GLS common factor 

analysis (GLS) and alpha factor analysis (ALPHA). They also used LISREL VI (Jöreskog & 

Söbom, 1984) and the minimum residuals factor analysis method (MINRES). Due to the 

computational limitations, they only employed four test models. Each model included one to 
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three dimensions, either 15 or 30 items, and three sample sizes, 250, 500 and 1000 examinees. 

Knol and Berger compared results using the mean squared difference and found that MAXLOG 

performed the worst for the two-dimensional model with a mean squared error almost double 

what was seen with the other estimation techniques. For the three-dimensional model with 30 

items, NOHARM and the factor analysis approaches performed better than both TESTFACT, 

with six quadrature points, and MAXLOG which again produced the largest errors. When 

TESTFACT was run with only three quadrature points, it performed worse than NOHARM and 

the factor analysis approaches, however, it did not perform as bad as MAXLOG.  

 Bolt and Lall (2003) examined the recovery of item parameters using the Markov chain 

Monte Carlo estimation and specifically the Metropolis-Hasting algorithm. In their study, they 

used two sample sizes, 1,000 and 3,000, three correlations, .0,.3, and .6 and two test lengths, 25 

and 50 items. The multidimensional two parameter logistic model was employed and they 

compared the recovery of the item parameters under each condition. The results of the study 

showed that the item parameter recovery was generally unchanged by the simulation conditions. 

Tate (2003) also conducted a simulation study to compare parametric and nonparametric 

methods including Mplus, NOHARM, and TESTFACT for the recovery of dimensionality and 

item parameters. Tate made use of both unidimensional and multidimensional models, a variety 

of interdimensional correlations, and different test models including 1PL, 2PL and 3PL models. 

The overall results of Tate’s study showed that Mplus performed well for the 1PL and 2PL 

models and poorly in the 3PL models. Further results showed that NOHARM and TESTFACT 

performed positively under the simulation conditions.  

 Finch (2010 and 2011) expanded on the work done by Bolt and Lall (2003) and Tate 

(2003) and incorporated more simulation conditions and comparison techniques. Finch (2010) 
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used the unweighted least squares (ULS) estimation technique and the NOHARM software as 

well as the Robust Weighted Least Squares (RWLS) estimation and the Mplus 3 software to 

recovery item parameters for a two-dimensional simple structure tests with a variety of test 

lengths, examinee counts, and interdimensional correlations. Finch (2011) also used the 

unweighted least squares estimation technique and NOHARM under a 30 item two-dimensional 

test structure with some items loading onto only one dimension and some items loading onto 

both dimensions. Along with the change in the test model, Finch (2011) also varied the number 

of examinees and the correlation between dimensions. In his 2010 study, Finch found that the 

discrimination and difficulty estimates for ULS and RWLS were not impacted by the change in 

correlations. Overall, Finch (2010) saw that Mplus 3 produced slightly smaller errors than 

NOHARM for item parameter recovery. Finch (2011) found that as the correlation between the 

dimensions increased, the bias between the true and recovered discrimination and difficulty 

parameters also increased. Finch (2011) also found that items that loaded onto both dimensions 

produced a larger item parameter bias that those that loaded onto only one dimensions. 

 Han and Paek (2014) conducted a study that compared IRTPRO 2.1 with BA, MHRM 

and ADQ estimation techniques, Mplus 7 with the ML and Monte Carlo (MC) integration 

technique, FlexMIRT with BA and MHRM estimation, and EQSIRT with marginal maximum 

likelihood (MML), Monte Carlo Expectation-Maximization (MCEM) and the Markov chain 

Monte Carlo (MCMC) estimation technique. Han and Paek used a compensatory two parameter 

logistic model with three or four dimensions, varying model complexity, 30 items, and 3,000 

examinees. The results of the study showed that the correlations between the true item 

parameters and the recovered item parameters were high (0.8 and above) for both the item 



 21 

 

 

 

discrimination and the item difficulty. The complexity of the model did not impact the overall 

recovery of the item parameters. 

  Chalmers and Flora (2014) investigated both compensatory and noncompensatory 

models using the MHRM estimation technique. In their study, they used both two- and three- 

dimensional noncompensatory and compensatory IRT models, different sample sizes (n = 1,000, 

2,500, 4,000), a variety of unidimensional items (5,10, 15), and varied the correlation between 

dimensions (.0, .2, .4, .6, .8). Similar to Bolt and Lall (2003), they found no large changes in the 

recovery of compensatory item parameters and also found poor recovery for the three 

dimensional noncompensaroty models especially with small sample sizes and large correlations 

between dimensions. Babock (2011) investigated the performance of Metropolis- Hasting with 

Gibbs algorithm in the estimation of a noncompensatory two parameter multidimensional model. 

In his study, Babcock modified the correlation between dimensions, the sample size, and the 

number of unidimensional items per dimension. Babcock found that 4,000 examinees was 

desirable and that higher correlations between dimensions produces poorly estimated a 

parameters. 

 Previous studies have also investigated the recovery of ability estimates. In 2005, de la 

Torre and Patz examined the effect of the number of abilities (two and five), number of items 

(10, 30 and 50), and the degree of correlation between abilities (.0, .4, .7 and .9). All factors were 

crossed for a total of 24 conditions. The model was a multidimensional 3PL compensatory model 

with only between item dimensionality. The study demonstrated that as the correlations between 

abilities, number of items, and number of abilities increased, so did the recovery correlations. 

The study also showed that with at least 30 items and uncorrelated abilities, the underlying 
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abilities can be estimated reliably. The largest recovery correlations were obtained when there 

were five dimensions and the correlation between the dimensions was .9. 

In another study, de la Torre (2009) used the compensatory multidimensional 3PL model 

where each item loaded onto only one dimension to investigate the recovery of ability estimates 

singularly as well as with other ancillary variables such as examinee demographics. Simulation 

conditions included 10 or 20 items, two to five dimensions, and correlations of .5 and .9 between 

dimensions. A joint maximum likelihood estimation was used to recover both item parameters 

and examinee abilities. The simulation produced recovery correlations that were 0.85 and 0.91 

for the 10 and 20 item test respectively. Additional results show that the increase in the 

correlation between dimensions also increased the recovery correlations. Overall, de la Torre 

found that the inclusion of ancillary variables improved the recovery of ability estimates.  

  In the aforementioned studies, only models with between item dimensionality were used. 

Segall (2001) and Wang, Chen and Cheng (2004) used test models that included between and 

within dimensionality. Segall (2001) used real and simulated ASVAB data with 105 item test 

which included four dimensions with each item loading onto three of the four dimensions. Segall 

used the IFACT parameter estimation procedure which is an extension of the MCMC method 

and Bayesian estimation (Segall, 1998). Segall found that using MIRT almost doubled the 

reliability results when compared to a simple number correct calculation. Wang, Chen and 

Cheng (2004) compared the MIRT recovery with the UIRT ability recovery on a 50 item 

multiple choice test and a 40 item 4 point Likert scale personality inventory. The study utilized 

Bock Aitkin maximum-likelihood estimation using both ACER ConQuest (Wu, Adams, & 

Wilson 1998) and SAS MLMIXED (SAS Institute, 1999) procedure. Wang, Chen and Cheng 

found that multidimensional ability recovery improved with the increased number of dimensions, 
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higher correlations between dimensions, and more items per dimension. Furthermore, they found 

that dimension with four to nine items produced unreliable ability estimates.   

 Where previous studies have mostly focused on either item parameter recovery or ability 

estimates, the current study investigates the recovery of both item parameters and ability 

estimates. Additionally, many of the simulation conditions, such as correlations between 

dimensions, differing estimation techniques and a variety of test models are also used in the 

current study which allows for a more direct comparison of the results. Furthermore, where 

previous research has been based on two or three dimensional models with only between item 

dimensionality, the current study goes a bit further and investigates both simple and complex 

three dimensional test designs.  
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3 METHODOLOGY 

The purpose of this study is to compare the accuracy of item discrimination parameter 

estimation, item difficulty parameter estimation, and examinee ability estimation for 

multidimensional item response models using both Mplus 7 and IRTPRO 3. Both Mplus 7 and 

IRTPRO 3 are used often in unidimensional IRT modeling; nonetheless, there is not a great deal 

of work comparing their use in the multidimensional setting. A series of simulations was used to 

evaluate and compare the ability of Mplus 7 and IRTPRO 3 to recover MIRT item parameters 

and examinee ability. While there have been numerous studies focused on the comparison of 

MIRT estimation techniques, there is a small body of work that looks at the IRTPRO 3 approach 

due to the relative newness of the program. This study extends on the body of research by 

investigating a variety of simulation conditions and includes a comparison of examinee ability 

estimation.  

Methods 

The study was conducted in two parts. The first part of the study evaluated and compared 

the ability of Mplus 7 and IRTPRO 3 to recover the true MIRT item parameters. The second part 

of the study evaluated and compared the ability of Mplus 7 and IRTPRO 3 to recover the true 

examinee ability. This study was conducted with the practitioner in mind and was set up in such 

a way to mimic real world conditions.  

Item parameter estimation. Item parameters for a compensatory two parameter logistic 

MIRT model were used. There are a variety of models that could have been chosen, however, the 

compensatory two parameter model was chosen due to its use in other studies (Bolt & Lall 2003, 

Finch 2010; Finch 2011; Knol & Berger, 1991; Tate, 2003) The item discrimination parameter 

values are similar to a simulation run by Reckase (2009) in which he generated item parameters 



 25 

 

 

 

for a three-dimension test and used them to investigate the model estimation procedures for four 

different MIRT modeling software. Since the recovery of item parameter estimates were of 

interest, the first step in the simulation was to establish a sample size that was large enough to 

produce relatively stable item parameter estimates. Previous simulations studies have used 

sample sizes as small as 100 and as large as 4,000; though these studies were conducted with 

multiple repetitions (Babcook, 2011; Bolt, 2003; Carrol, Williams, & Levine 2007; Finch, 2011; 

Han & Paek, 2014; Kahrama, 2013; Wang & Nydick, 2015; Wen-Chung, 2004). The focus of 

this study was on the use of the software programs in the real world. Practitioners are often only 

given one data set and therefore, this simulation study was run using one main run and two 

verification replications. 

A simple structure, 24 item, multidimensional model was used to establish a stable 

sample size. In this model, one-third of the items load onto the first factor, one-third of the items 

load onto the second factor and the final third of the items load onto the third factor. The 

structure of the test can be likened to the structure of a general math test where some items are 

related to algebra, other to geometry, and yet others to calculus. This model can be seen in Figure 

5. The item parameters for Model 1are shown in Table 1. 

 

Figure 5. Between-item multidimensional IRT model 
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Table 1. 

 Item Parameters Between-item multidimensional IRT model Model 1 

Item 

number 

a1 a2 a3 d 

1 0.04 0.00 0.00 0.08 

2 0.02 0.00 0.00 -0.09 

3 0.15 0.00 0.00 -0.29 

4 0.09 0.00 0.00 -0.29 

5 0.16 0.00 0.00 -0.22 

6 0.16 0.00 0.00 -0.31 

7 0.20 0.00 0.00 -0.63 

8 0.12 0.00 0.00 0.40 

9 0.00 0.04 0.00 0.04 

10 0.00 0.05 0.00 0.05 

11 0.00 0.14 0.00 0.45 

12 0.00 0.02 0.00 -0.14 

13 0.00 0.04 0.00 0.23 

14 0.00 0.03 0.00 -1.02 

15 0.00 0.02 0.00 0.23 

16 0.00 0.00 0.00 -0.16 

17 0.00 0.00 0.05 -0.16 

18 0.00 0.00 0.12 0.31 

19 0.00 0.00 0.06 0.71 

20 0.00 0.00 0.05 0.03 

21 0.00 0.00 0.06 0.38 

22 0.00 0.00 0.11 -0.12 

23 0.00 0.00 0.15 -0.17 

24 0.00 0.00 0.01 -1.07 

 

As with other MIRT simulation studies, examinee ability estimates were taken from a 

multivariate normal distribution with a mean of zero and a standard deviation of one (Bolt, 2003; 

Carrol, Willimas, & Levine 2007; Finch, 2010; Finch, 2011; Finch & Habing, 2005; Kahraman, 

2013; Wang & Nydick, 2015; Wen-Chung, 2004). Using the given item parameters and an 

uncorrelated multivariate normal theta values, simulated examinee responses were produced 

from SAS such that for every examinee, xi, the examinee response was calculated using Equation 

20 where uvi was taken from the random uniform distribution. 
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Equation 20 Examinee Response 

𝑥𝑣𝑖 = {
1 𝑖𝑓 𝑝𝑖(𝜃𝑣) > 𝑢𝑣1

0, 𝑖𝑓 𝑝𝑖(𝜃𝑣)  ≤ 𝑢𝑣1
       (20) 

The WLSMV and Bayes estimation for Mplus 7 and the BA approach with expectation 

maximizing algorithm, ADQ and MHRM approach for IRTPRO 3 were run to estimate the item 

parameters. The sample size varied from 1,000 to 10,000 in increments of 1,000. 

To establish a sufficient sample size, the multidimensional discrimination (MDISC) and 

multidimensional difficulty parameters were compared using the root mean square error 

(RMSE). The equation for RMSE is shown below where, 𝑥̂𝑖 is the average parameter value 

obtained from all of the replications, 𝑥𝑖  is the true value and n is the number of test items.   

Equation 21 Root Mean Square Error 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑛

𝑖=1        (21) 

After establishing a sufficient sample size, a simulation with that sample size, a simple 

three-dimensional structure with zero correlations between each factor, and 24 items with 8 items 

loading on each dimension was used to identify the top estimation technique for each program. 

These estimation techniques were then used in the rest of the simulation conditions which 

included three models and three correlations.  

The first model is identical to the model used to identify an adequate sample size and the 

top performing estimation technique for each program. The second model used in this study is 

the model used by Kim, et al. (2013) and is shown in Figure 6. As stated in their study, the 

within-item multidimensional model is suitable when an item measures two or more abilities 
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(Kim et al., 2013). The model used in this study not only contained within-item dimensionality, 

it also contained some items that only load onto one factor, between-item dimensionality. The 

inclusion of both within-item and between-item dimensionality made this model a between- and 

within-item MIRT model and is named as such. Half of the items loaded onto a single factor and 

the other half of the items loaded onto two factors. A real-world example of this test structure is 

a math test where there are questions that assess computation, algebra, and calculus separately. 

Some questions assess both algebra and calculus, some assess both computation and calculus, 

and others assess both computation and algebra.  

 

 

The final model is another within- and between-item multidimensional model. The final 

model in this study, shown in Figure 7, is analogous to one model used by Wang and Nydick 

(2015) in which half of the items loaded exclusively onto one of the three factors, one-fourth of 

the items load onto two factors and one-fourth load onto all three factors. Wang and Nydick 

randomly selected the items that would load onto two or three factors. For this study, the items 

Figure 6. Between and within-item multidimensional IRT model 



 29 

 

 

 

that load onto two or three abilities were not randomly selected, but were identified before the 

simulation was run. The factor combination varied for items that assessed two factors. One third 

of the two factors items load onto factors one and two, one-third of the two factors items load 

onto factors two and three, and one-third of the two factors items load onto factors one and three.  

  

 

The correlations between the factors range from .0 to .9 in increments of three analogous 

to the simulation done by Bo and Stone (2008). This was done in order to simulate data in which 

factors have varying levels of correlations from relatively small to large.  

All models were simulated with all conditions for a total of nine conditions. As stated 

previously, three replications were run in order to more accurately represent the conditions that a 

practitioner would encounter.  Having three replications allows for a comparison of estimation 

approaches for each simulation condition and it also allows for the observation of fluctuation 

over replications. The results of each replication were compared against each other as well as 

compared against the true values. RMSE was again used to make the comparison. All item 

Figure 7. Complex between and within-item multidimensional IRT model 
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parameters for the models are shown in Appendix A. The defaults of the program were run when 

possible to understand how each program might be used in a real-world setting.  

 

Examinee ability estimation. The second part of the study focused on examinee ability 

estimation. The investigation of each estimation technique to recover examinee ability estimates 

was set up in a similar fashion to the first part of the study. First, a sufficient number of items per 

dimension was established. This was done using the same simple three-dimensional structure 

with no correlation between factors and one-third of the items loading exclusively onto one of 

the three dimensions. The number of items per dimension varied from eight to 24 in increments 

of two. Again, examinee ability estimates were taken from a multivariate normal distribution 

with a mean of zero and a standard deviation of one.  SAS was used to produce examinee 

response patterns, and three replications were run. The sample size used came from the first part 

of the simulation study. To understand the examinee ability recovery for each estimation 

technique, Pearson’s correlations were used. The ability estimates were compared to the true 

values for each dimension.  

 After identifying the appropriate number of items per dimension, another simulation with 

a simple three-dimensional structure with zero correlations between each factor was used to 

identify the top preforming estimation technique for each software program. These top two 

software programs were then exposed to the same nine simulation conditions as in the first part 

of the study, three different models, three different correlations, and three replications. All item 

parameters are shown in Appendix A.  
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4 RESULTS 

 

Before embarking on the multidimensional aspect of the study, the ability of each 

estimation technique to recover the item parameters and examinee abilities were run in the 

simplest case to serve as a baseline. The baseline model used for this study was a simple 

unidimensional 24 item exam with 10,000 examinees. The model serves as a comparison of the 

results from the more complex multidimensional models. If the estimation techniques did not 

recover the true parameters well for the baseline model, then that would suggest that the addition 

on any complexity to the models would decrease the estimations techniques ability to recover 

true item parameters and examinee ability.  

 The results show that the discrimination parameters and the difficulty parameters were 

recovery relatively well. Additionally, the correlations between the true abilities and the 

recovered abilities were relatively high. The item parameter results of each of the estimation 

techniques for each of the repetitions are shown in Figures 8 and 9, and the results of the 

correlations between examinee abilities and recovered abilities for each repetitions and technique 

are shown in Table 2.  
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Figure 8. Unidimensional discrimination parameter recovery 

 

 

Figure 9. Unidimensional difficulty parameter recovery 
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Table 2.  

Correlations between true abilities scores and recovered ability estimates 

 True 

Ability 

BA ADQ MHRM WLSMV Bayes 

 Mean 

Bayes  

Median 

True ability  1       

BA 0.887** 1      

ADQ 0.903** 0.980** 1     

MHRM 0.795** 0.861** 0.878** 1    

WLSMV 0.903** 0.979** 1.000** 0.878** 1   

Bayes Mean 0.894** 0.969** 0.989** 0.868** 0.989** 1  
Bayes Median 0.890** 0.964** 0.984** 0.863** 0.985** 0.996** 1 

* *p < 0.001 

 

Item Parameter recovery 

 As stated in the methods sections, the first part of the study investigated the ability of 

each estimation technique to recover the true item parameters. Before true parameters could be 

recovered, it was necessary to identify an adequate sample size. To find the sample size needed, 

a simple three dimensional 24-item test was used and sample size varied from 1,000 to 10,000. 

The following describes the results of the sample size exploration 

Adequate sample size. The defaults for the BA estimation technique in IRTPRO 3 was 49 

quadrature points and for the ADQ the default was nine quadrature points. When theses defaults 

were used, both estimation techniques did not converge. Schilling and Bock (2005) express that 

the number of quadrature points must decrease when the number of dimensions increase. 

Because of this, when the ADQ estimation was rerun, 2 points per dimension was used for a total 

of six quadrature points. Similarly, three quadrature points per dimension were used with the BA 

estimation technique for nine quadrature points.  
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Although the intent was to run only three replications for each on the sample sizes, the 

WLSMV estimation technique failed to converge for any of the repetitions with the 3,000, 5,000, 

and 7,000 examinee samples and for the 1,000, 2,000 4,000, 6,000, 8,000, and 10,000 samples, 

only one of the three replications converged. In order to produce a sufficient number of 

replications, examinee responses were simulated until there were at least two converging 

replications per sample size. 

 After averaging the RMSE values together for each of the replications, the change in 

RMSE became relatively small after the 8,000 examinee sample size. For this reason, a sample 

size of 8,000 was determined to be sufficient. The results depicted that each estimation technique 

varied greatly with respect to the sample size. The multidimensional difficulty error values 

consistently decreased as the sample size increased. The same is true for the MDISC parameter, 

but, the d parameter did not experience as much of a decrease as the MDISC parameter. The 

results are provided in Figures 10 and 11. 

 

Figure 10. MDISC recovery for adequate sample size 
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Figure 11. Difficulty recovery for adequate sample size 
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Although BA is the default estimation technique in IRTPRO 3, MHRM was chosen because a 

previous pilot study showed that IRTPRO 3 consistently produced an error when the BA 

estimation technique was used with multiple dimensions per item. In the end, a sample size of 

8,000 examinees with both the Bayes estimation technique from Mplus 7 and the MHRM 

estimation technique from IRTPRO 3 was selected for use the recovering item parameters in the 

remaining conditions. 

Conditions 1 through 4. Model 1 was used for the first four conditions. The only variable 

that changed between conditions was the correlation between factors. The results of the first four 

conditions portrayed the Bayes estimation technique with a lower RMSE than the MHRM 

technique when recovering the MDISC parameter. Conversely, the results exhibited a lower 

average d RMSE for the MHRM technique than the Bayes estimation technique. The first 

replication yielded the MDISC RMSE with the biggest difference between the two estimation 

techniques and the second replication yielded the biggest difference in the d RMSE for the two 

estimation techniques.  

The results for Condition 2 were similar to that of Condition 1. Again, the RMSE MDISC 

average recovery was the smallest with the Bayes estimation technique and the RMSE d average 

recovery was the smallest with MHRM technique. The overall RMSE was very similar to the 

ones seen in the first condition. Although the increase from a zero correlation to a .3 correlation 

was reasonably large, the results illustrated that the increase in correlations did not have a large 

impact on the parameter recovery. It should be noted, that some researchers place both 

correlations .0 and .3 in the small category (Hinkle, Wiersma & Jurs, 2003) and therefore might 

not consider a change in correlation from .0 to .3 which would be reasonably large. 
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Condition 3 moves the correlation into the medium category with a correlation of .6 

(Hinkle, Wiersma & Jurs 2003). Although the correlation increased, each software program 

performed in a similar matter to as in the first two conditions. Again, Bayes produced closer 

MDISC estimates and MHRM produced closer d parameter estimates. Of the conditions based 

on Model 1, Condition 3 yielded the highest average RMSE values for both software program. 

The results also depicted that the RMSE d recovery values were somewhat stable across the three 

replications.  

Condition 4 had the highest correlations out of the four condition at .9. A correlation of 

this size is considered large (Hinkle, Wiersma & Jurs 2003). With such a large correlation 

between dimensions, the model is almost unidimensional. As with Condition 3, the d RMSE 

recovery was moderately stable and in Condition 4, the RMSE for MDISC was also relatively 

stable. The stability of the estimations are illustrated in Figures 12 and the overall results of the 

four conditions and averages for Model 1 are given in Table 3. 

Table 3. 

 Average MDSIC RMSE and d RMSE by condition 

 Bayes  MHRM 

 

Average 

MDSIC RMSE 

Average 

d RMSE 

 Average 

MDSIC RMSE 

Average 

d RMSE 

Condition 1 0.073 0.160  0.214 0.052 

Condition 2 0.076 0.160  0.108 0.023 

Condition 3 0.064 0.156  0.094 0.024 

Condition 4 0.060 0.160  0.108 0.024 
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Figure 12. MDISC and d parameter recovery for conditions one through four 
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Conditions 5 through 8. Model 2 was used for the next set of conditions. Again, the only 

variable that changed between conditions was the correlation between dimensions. Model 2 

included within-item and between-item dimensionality. The correlation between dimensions was 

zero for Condition 5. The average RMSE for the MDISC recovery was the smallest with the 

Bayes estimation technique and for the d recovery and the average RMSE was the smallest with 

the MHRM estimation technique. The results also showed that the d RMSE recovery values were 

comparatively close for replication one.  

Conditions 6 and 7 produced similar results as seen in Condition 5. For these conditions, 

Bayes estimation out preformed MHRM estimation for MDISC recovery while MHRM 

estimation outperformed Bayes estimation for d parameter recovery. The results showed a larger 

discrepancy between estimation techniques in recovering the MDISC than seen in the first four 

conditions. Additionally, the discrepancies in the d parameter recovery varied more under Model 

2 than it did in Model 1.  

The correlations for Condition 8 were all set at .9, again making them similar to the 

unidimensional model. Just as in with the previous conditions, in Condition 8 the Bayes 

estimation technique produced the smallest RMSE for the MDISC and MHRM produced the 

smallest RMSE for the d parameter recovery. As in the first four conditions, the difference 

between the d recovery for each estimation technique is rather large for each replication. 

Additionally, the d RMSE results are reasonably stable for each estimation techniques. The 

results for conditions five through eight are shown in Figure 14 and Table 4. 
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Table 4 

. Average MDSIC RMSE and d RMSE by condition 

 Bayes  MHRM 

 

Average 

MDSIC RMSE 

Average 

d RMSE 

 Average 

MDSIC RMSE 

Average 

d RMSE 

Condition 5 0.146 0.153  0.438 0.053 

Condition 6 0.144 0.156  0.435 0.022 

Condition 7 0.162 0.330  0.446 0.025 

Condition 8 0.166 0.150  0.444 0.022 

 

Figure 13. MDISC and d parameter recovery for conditions five though eight 
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Conditions 9 through 12. Model 3 was the basis for the final set of conditions. Just as in 

the previous conditions, the only change between conditions nine through twelve was the 

increased correlations between dimensions. Model 3 also included both within- and between- 

item dimensionality and the most complexity of the three models. Overall, the results of 

Condition 9 were similar to the results of Conditions 1 through 8. In Condition 9, the Bayes 

estimation technique produced the smallest RMSE for the MDSIC recovery and the MHRM 

estimation technique produced the smallest RMSE for the d recovery.  

The results from Conditions 10 and 12 did not change much from the results of Condition 

9 even though the correlations between the two dimensions increased. Again, the Bayes 

estimation technique proved best for the MDISC recovery and the MHRM estimation technique 

proved best for the d parameter recovery. Condition 12 was a little different. In general, the 

results were the same with Bayes being the best with MDISC recovery and MHRM being the 

best for the d recovery, however, the difference between the average MDISC recovery to each 

estimation technique was the largest in this condition. The graphs for conditions nine through 

twelve are shown in Figure 14 and Table 5 shows the overall results of all four conditions and 

averages for Model 3. 

Table 5. 

Average MDSIC RMSE and d RMSE by condition 

 Bayes  MHRM 

 

Average 

MDSIC RMSE 

Average 

d RMSE 

 Average 

MDSIC RMSE 

Average 

d RMSE 

Condition 9 0.317 0.315  0.491 0.053 

Condition 10 0.256 0.142  0.502 0.022 

Condition 11 0.249 0.148  0.545 0.025 

Condition 12 0.297 0.146  0.594 0.022 
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Figure 14. MDISC and d parameter recovery for conditions nine through twelve 
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Examinee ability estimation 

 Before commencing on the comparison of the examinee ability recovery, it was important 

to identify a sufficient number of items per dimension. A simple three-dimensional test with 10 

to 24 items per dimensions was used to identify the optimal number of items needed. As stated 

previously, this range was chosen based on the results from the first part of the study where 

between eight and fourteen items loaded onto one dimension. The IRTPRO 3 ADQ estimation 

technique did not produce ability estimates and, therefore, the expected a posteriori (EAP) 

method was used to obtain ability estimates. 

Items per dimension. As with the first part of the study, three replications were used for 

each of the item sizes. The initial results yielded correlations between the true ability and the 

recovered ability as low as .021. The low recovery correlations were only seen in the recovery of 

the third dimension. This caused the average correlation values for each estimation technique to 

be skewed because there were only three replications and one was an outlier. The initial recovery 

correlation results are shown in Figure 15 and Tables 6 through 8.  
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Figure 15. Examinee ability recovery by dimensions and items per dimension 
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Table 6.  

Dimension 1 correlations between examinee ability estimates and true ability 

Items 

per 

dim 

BA 

 r 

BA 

SD 

ADQ  

r 

ADQ 

SD 

mhrm 

 r 

mhrm 

M SD 

Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 

Median 

 r 

Bayes 

Median 

SD 

wlsmv 

r 

wlsmv 

SD 

24 0.815 0.002 0.815 0.002 0.489 0.012 0.796 0.003 0.789 0.003 0.815 0.002 

22 0.795 0.002 0.795 0.002 0.461 0.006 0.772 0.001 0.763 0.002 0.795 0.001 

20 0.779 0.003 0.779 0.003 0.45 0.014 0.756 0.003 0.746 0.003 0.779 0.003 

18 0.769 0.003 0.769 0.003 0.451 0.013 0.743 0.005 0.733 0.006 0.769 0.003 

16 0.741 0.005 0.741 0.005 0.432 0.008 0.711 0.005 0.701 0.005 0.740 0.005 

14 0.725 0.002 0.725 0.002 0.414 0.000 0.695 0.003 0.686 0.005 0.725 0.002 

12 0.683 0.003 0.683 0.003 0.374 0.009 0.647 0.004 0.635 0.005 -0.226 0.789 

10 0.646 0.014 0.646 0.014 0.351 0.022 0.608 0.016 0.592 0.015 -0.210 0.748 

 

Table 7. 

Dimension 2 correlations between examinee ability estimates and true ability  

Items 

per 

dim 

BA 

 r 
BA 

SD 
ADQ  

r 
ADQ 

SD 
mhrm 

 r 
mhrm 

M SD 
Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 
Median 

 r 

Bayes 
Median 

SD 

wlsmv 

r 
wlsmv 

SD 

24 0.846 0.006 0.857 0.006 0.589 0.009 0.842 0.006 0.836 0.007 0.857 0.006 

22 0.829 0.010 0.838 0.010 0.570 0.008 0.822 0.010 0.816 0.010 0.838 0.010 

20 0.817 0.007 0.825 0.006 0.549 0.003 0.808 0.005 0.801 0.004 0.825 0.006 

18 0.795 0.006 0.800 0.006 0.511 0.003 0.779 0.006 0.772 0.008 0.800 0.006 

16 0.768 0.004 0.772 0.004 0.479 0.010 0.749 0.005 0.739 0.005 0.772 0.004 

14 0.740 0.005 0.700 0.005 0.448 0.013 0.714 0.005 0.704 0.004 0.742 0.005 

12 0.699 0.004 0.700 0.004 0.400 0.009 0.668 0.007 0.656 0.006 0.700 0.004 

10 0.641 0.005 0.642 0.005 0.329 0.015 0.596 0.008 0.581 0.011 -0.642 0.005 

 

Table 8. 

 Dimension 3correlations between examinee ability estimates and true ability  

Items 

per 

dim 

BA 

 r 
BA 

SD 
ADQ  

r 
ADQ 

SD 
mhrm 

 r 
mhrm 

M SD 
Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 

Median 

 r 

Bayes 

Median 

SD 

wlsmv 

r 
wlsmv 

SD 

24 0.569 0.476 0.577 0.480 0.392 0.330 0.567 0.472 0.563 0.469 0.577 0.480 

22 0.569 0.462 0.575 0.467 0.397 0.313 0.564 0.458 0.559 0.454 0.575 0.467 

20 0.564 0.450 0.570 0.455 0.387 0.314 0.559 0.445 0.554 0.442 0.570 0.455 

18 0.543 0.449 0.548 0.451 0.352 0.305 0.534 0.439 0.528 0.435 0.547 0.450 

16 0.528 0.434 0.531 0.435 0.330 0.271 0.513 0.424 0.508 0.419 0.530 0.435 

14 0.487 0.404 0.488 0.404 0.283 0.232 0.467 0.385 0.459 0.380 0.488 0.404 

12 0.649 0.005 0.649 0.005 0.331 0.004 0.606 0.002 0.593 0.003 -0.649 0.005 

10 0.624 0.008 0.624 0.007 0.314 0.006 0.578 0.007 0.564 0.007 -0.624 0.007 
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Because of the drastic differences in recovery of the third dimension, the mean 

correlations are pulled down and the standard deviations are quite large. A modified z-score 

equation, as seen in Equation 17, where Mi is the modified z-score, xi is the data point, and 𝑥̃ is 

the median, was used to identify outliers (Iglewicz and Hoaglin, 1993). In order to combat the 

skew in the results, repetitions were run until there were at least two replications that produced 

estimates that were not considered outliers by using the modified z-score technique. The 

estimates from the two replications were then averaged together. For most item loading sample 

sizes, only one other replication needed to be run, however in the case of 22 items per dimension, 

two extra replications were needed in order to produce recovery correlations in the acceptable 

range. Additionally, seven replications had to be run for the 16-items per dimension size. The 

updated means and standard deviations are displayed in Figure 16 and Tables 9 through 11. The 

updated results provided means that were not affected by outliers and the standard deviations 

were smaller than seen previously in the third dimension. 

Equation 22 Modified z –score 

𝑀𝑖 =
0.6745(𝑥𝑖−𝑥)̃

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖−𝑥̃|)
        (22) 
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Figure 16. Examinee ability recovery by dimensions and items per dimension 
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Table 9. 

 Dimension 1 correlations between examinee ability estimates and true ability with no outliers 

Items 

per 

dim 

BA 

 r 

BA 

SD 

ADQ  

r 

ADQ 

SD 

mhrm 

 r 

mhrm 

 SD 

Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 

Median 

 r 

Bayes 

Median 

SD 

wlsmv 

r 

wlsmv 

SD 

24 0.816 0.002 0.816 0.002 0.483 0.012 0.796 0.003 0.790 0.003 0.816 0.002 

22 0.795 0.002 0.795 0.002 0.458 0.003 0.771 0.001 0.763 0.002 0.795 0.002 

20 0.780 0.004 0.780 0.004 0.451 0.020 0.756 0.004 0.746 0.004 0.780 0.003 

18 0.770 0.003 0.770 0.003 0.459 0.002 0.745 0.005 0.736 0.005 0.770 0.003 

16 0.743 0.004 0.743 0.004 0.436 0.006 0.712 0.006 0.703 0.006 0.743 0.004 

14 0.724 0.001 0.724 0.001 0.414 0.001 0.697 0.001 0.688 0.003 0.724 0.001 

12 0.683 0.003 0.683 0.003 0.374 0.009 0.647 0.004 0.635 0.005 -0.226 0.789 

10 0.646 0.014 0.646 0.014 0.351 0.022 0.608 0.016 0.592 0.015 -0.210 0.748 

 

Table 10.  

Dimension 2 correlations between examinee ability estimates and true ability with no outliers  

Items 

per 

dim 

BA 

 r 

BA 

SD 

ADQ  

r 

ADQ 

SD 

mhrm 

 r 

mhrm 

 SD 

Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 

Median 

 r 

Bayes 

Median 

SD 

wlsmv 

r 

wlsmv 

SD 

24 0.849 0.006 0.861 0.006 0.591 0.009 0.845 0.006 0.840 0.007 0.860 0.006 

22 0.835 0.001 0.844 0.002 0.575 0.000 0.828 0.003 0.822 0.003 0.844 0.002 

20 0.821 0.003 0.828 0.002 0.550 0.003 0.811 0.000 0.804 0.000 0.828 0.002 

18 0.798 0.001 0.804 0.001 0.510 0.004 0.783 0.001 0.776 0.001 0.804 0.001 

16 0.771 0.003 0.774 0.004 0.484 0.003 0.751 0.005 0.741 0.004 0.774 0.003 

14 0.742 0.004 0.700 0.005 0.447 0.018 0.717 0.005 0.705 0.003 0.744 0.005 

12 0.699 0.004 0.700 0.004 0.400 0.009 0.668 0.007 0.656 0.006 0.700 0.004 

10 0.849 0.006 0.861 0.006 0.591 0.009 0.845 0.006 0.840 0.007 0.860 0.006 

 

Table 11. 

Dimension 3 correlations between examinee ability estimates and true ability with no outliers  

Items 

per 

dim 

BA 

 r 

BA 

SD 

ADQ  

r 

ADQ 

SD 

mhrm 

 r 

mhrm 

 SD 

Bayes 

mean 

r 

Bayes 

mean 

SD 

Bayes 

Median 

 r 

Bayes 

Median 

SD 

wlsmv 

r 

wlsmv 

SD 

24 0.843 0.001 0.854 0.001 0.583 0.008 0.840 0.001 0.834 0.001 0.854 0.001 

22 0.835 0.003 0.844 0.003 0.578 0.021 0.828 0.004 0.822 0.004 0.844 0.003 

20 0.824 0.001 0.832 0.001 0.569 0.001 0.816 0.001 0.809 0.002 0.833 0.001 

18 0.802 0.008 0.808 0.009 0.528 0.013 0.787 0.009 0.779 0.008 0.807 0.009 

16 0.778 0.004 0.782 0.003 0.487 0.003 0.758 0.002 0.749 0.001 0.782 0.003 

14 0.720 0.001 0.721 0.002 0.416 0.003 0.690 0.003 0.678 0.003 0.721 0.002 

12 0.649 0.005 0.649 0.005 0.331 0.004 0.606 0.002 0.593 0.003 -0.649 0.005 

10 0.624 0.008 0.624 0.007 0.314 0.006 0.578 0.007 0.564 0.007 -0.624 0.007 

 

As expected, the results illustrated that the correlation between the true and the recovered 

examinee ability estimations decreased as the number of items that load on a dimension 

decreased. Although there is no major dip in the graphs, the lack of reliability of the 16-items per 
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dimension caused a red flag and therefore 18-items per dimension was selected as the minimum 

number of items per dimension. Additionally, 18-items per dimension was selected because two 

of the original three replications produced estimates within the acceptable range.  

For the estimation techniques, the MHRM technique was ruled out immediately due to 

the comparatively low recovery correlations even though the recovery correlations were 

relatively stable. The MHRM recovery correlations were four to five-tenths of a point smaller 

than the other techniques. The remaining two estimation techniques in the IRTPRO 3 software 

were very close, so much so that the line graphs are indistinguishable. Because the results from 

the first section of the study were being combined with the second part of the study, the ADQ 

technique was selected because the BA estimation technique would not run in complex models. 

Although the ADQ estimation technique varied greatly, it did produce results. The Bayes 

estimation technique was again selected because it was also used in the first part of the study. 

The Mplus 7 Bayes estimation technique produced both the mean and median ability estimate for 

each of the ten imputations. The correlations for this technique were also very stable and 

relatively high.  

 Conditions 1 through 4. The first four conditions were based on Model 1 with the 

correlations between dimensions increasing in each subsequent conditions. In Model 1, 18 

unique items loaded onto each dimension with no cross loading. The Bayes median ability 

recovery consistently produced the smallest correlations between the true abilities and the 

recovered abilities. The ADQ estimation technique consistently produced the largest correlations 

between true ability and recovered ability. The difference between the recovery correlations was 

the smallest in Dimension 3 for all four conditions, indicating that the results for Dimension 3 

were the most consistent between estimation techniques. Overall, the difference between ability 
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recovery correlations were relatively small. When compared to other conditions, the recovery 

correlations decreased as the correlation between dimensions increased.  

An examination of each individual dimension showed that the correlations between the 

true abilities and the recovered abilities were the smallest for Dimension 1 and the largest for 

Dimension 3. These results were exhibited in all conditions related to Model 1. The results also 

indicted that that as the correlation between dimensions increased, the correlation between the 

recovered abilities and the true abilities also increased. The increase was also seen in all four 

conditions. The graphical and tabular results for the first four models are shown in Figure 17 and 

Table 12. 

Table 12.  

Average correlation and standard deviations for each dimension for conditions 1-4 

Condition Dimension 

Bayes 

mean r 

Bayes 

mean SD 

Bayes 

median r 

Bayes 

median 

SD 

ADQ 

 r 

ADQ  

SD 

1 1 0.748 0.004 0.739 0.002 0.775 0.004 

 2 0.777 0.004 0.769 0.005 0.798 0.004 

 3 0.786 0.005 0.777 0.005 0.806 0.005 

2 1 0.757 0.003 0.748 0.004 0.782 0.003 

 2 0.784 0.002 0.777 0.003 0.805 0.002 

 3 0.793 0.002 0.785 0.003 0.813 0.001 

3 1 0.794 0.002 0.786 0.003 0.814 0.003 

 2 0.814 0.003 0.807 0.003 0.832 0.003 

 3 0.819 0.003 0.811 0.003 0.837 0.004 

4 1 0.864 0.001 0.859 0.001 0.878 0.001 

 2 0.872 0.001 0.867 0.000 0.884 0.001 

 3 0.873 0.003 0.868 0.003 0.885 0.002 
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Figure 17. Correlations between true ability and recovered ability for each dimension 
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Conditions 5 through 8. Conditions 5 through 8 were run using Model 2 and again the 

only differences were in increase in the correlations between the models. In Model 2, nine items 

loaded onto dimensions one, two and three, for a total of 27 items that loaded onto only one 

dimension. Additionally, nine items loaded onto dimensions one and two, one and three and two 

and three for a total of 27 items loading onto two dimensions. No items loaded onto all three 

dimensions. In all, 27 items loaded onto each factor. As seen in Model 1, the ADQ estimation 

technique consistently produced the highest correlations between true ability and the recovered 

ability and the Bayes median produced the smallest correlations. Likewise, the differences in the 

recovery correlations were rather small.  

As seen in the first model, as the correlation between dimensions increased, the 

correlation between the recovered abilities and the true abilities values also increased. In 

addition, Dimension 3 produced the highest recovery correlations for all four conditions under 

Model 2. Furthermore, the recovery correlations were larger than the recovery correlations seen 

in the first four conditions even when the correlation between the dimensions were the same. The 

graphical and tabular results for the first four models are shown in Figure 18 and Table 13. 

Table 13.  

Average correlation and standard deviations for each dimension for conditions 5-8 

Condition Dimension 

Bayes 

mean r 

Bayes 

mean SD 

Bayes 

median r 

Bayes 

median SD ADQ r ADQ SD 

5 1 0.784 0.002 0.777 0.003 0.805 0.003 

 2 0.805 0.003 0.797 0.004 0.824 0.003 

 3 0.838 0.003 0.832 0.003 0.853 0.002 

6 1 0.805 0.003 0.799 0.003 0.001 0.001 

 2 0.821 0.001 0.815 0.001 0.839 0.000 

 3 0.846 0.001 0.841 0.002 0.861 0.001 

7 1 0.842 0.002 0.836 0.002 0.856 0.002 

 2 0.851 0.002 0.845 0.003 0.867 0.002 

 3 0.870 0.002 0.865 0.001 0.882 0.001 

8 1 0.912 0.002 0.909 0.003 0.920 0.001 
 2 0.916 0.001 0.913 0.001 0.923 0.001 

 3 0.920 0.001 0.918 0.001 0.928 0.001 
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Figure 18. Correlations between true ability and recovered ability for each dimension 
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Conditions 9 through 12. The third model was used to simulate Conditions 9 through 12 

and again the correlations between dimensions increased as the condition number increased. In 

Model 3, nine items loaded solely onto Dimension 1, nine items solely loaded onto Dimension 2 

and nine items solely loaded onto Dimension 3. Of the 54 items, 12 loaded onto two dimension; 

four loaded onto both dimensions one and two, four loaded onto both dimensions one and three 

and four loaded onto both dimensions two and three. The remaining 15 items loaded onto all 

three dimensions. In this model, a total of 32 items loaded onto each dimension, more than in any 

other model.  

As seen in all of the other condition, the ADQ estimation technique performed the best 

with the highest correlations between recovered ability and the true estimates. The Bayes median 

had the lowest correlations between the true and the recovered ability levels. Even though the 

ADQ technique performed better, the differences between the ADQ and the Bayes estimation 

techniques was the smallest with the third model. For a third time, the recovery correlations for 

Dimension 3 were higher than that of the other two dimensions. The graphical and tabular results 

for the first four models are shown in Figure 19 and Table 14. 

Table 14.  

Average correlation and standard deviations for each dimension for conditions 9-12 

Condition Dimension 

Bayes 

mean r 

Bayes 

mean SD 

Bayes 

median r 

Bayes 

median SD ADQ r ADQ SD 

9 1 0.750 0.002 0.740 0.000 0.775 0.001 

 2 0.778 0.002 0.769 0.003 0.801 0.002 

 3 0.827 0.005 0.821 0.005 0.844 0.005 

10 1 0.786 0.002 0.779 0.003 0.805 0.001 

 2 0.805 0.002 0.798 0.002 0.823 0.001 

 3 0.843 0.002 0.837 0.002 0.857 0.003 

11 1 0.839 0.002 0.834 0.003 0.853 0.001 

 2 0.847 0.000 0.842 0.001 0.862 0.002 

 3 0.875 0.003 0.871 0.002 0.887 0.002 

12 1 0.919 0.001 0.917 0.001 0.926 0.001 
 2 0.921 0.003 0.918 0.003 0.928 0.002 

 3 0.928 0.003 0.926 0.003 0.935 0.001 
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Figure 19. Correlations between true ability and recovered ability for each dimension 
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5 DISSCUSSION 

 

 Each software program provided evidence as to how it would run in the real-world. Even 

though there was no program that performed the best in all conditions, there was a great deal of 

information obtained about the efficacy of each estimation technique in a variety of situations.  

 Item parameters. The overall results of the item parameter recovery are a bit mixed; 

there is not one program that performed better than the other in all conditions. The Bayes 

estimation technique consistently produced smaller RMSE values for the MDISC parameter and 

the MHRM for the d parameter. The correlation between the three dimensions and the 

complexity of the model did not appear to change the results overall. A holistic view shows that 

the RMSE was generally small for each estimation technique and neither the Bayes or MHRM 

estimation techniques produced estimates that were far from the true values. It should be noted 

that these results were the product of only three replications. Even though three replications were 

used to resemble what practitioners would face in the real-world, it might also mask results that 

could be seen in the presences of more replications.  

 IRTPRO 3 and the MHRM estimation technique might prove the slightest bit more 

beneficial for practitioners because the results are shown using item response theory parameter 

variables. The Bayes estimation technique in Mplus 7 produced factor loadings and thresholds, 

which must then be converted to item parameters. Practitioners that are not familiar with factor 

analysis might not understand how to convert from these parameters to item response 

parameters, or might do the conversion incorrectly. Even though the Bayes estimation performed 

better overall, the fact that the item parameters might not be converted correctly and the rather 

small differences in RMSE suggest that the MHRM estimation technique might be better for 

practitioners who are interested in recovering MIRT item parameters. 
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Analogous to the study by Knoll and Berger (1991) this study showed no large 

differences between a factor analysis approach and an IRT approach to multidimensional test 

data. Additionally, the results of the current study were similar to the results of Bolt and Lall 

(2003), Chalmers and Flora (2014), Finch (2010), Han and Paek (2014) and Tate (2003). In those 

studies, the item parameter recovery appears to be unaffected by the simulation conditions such 

as change in the correlations between dimensions, sample sizes, and test lengths. Finch (2011) 

found higher bias in items that loaded onto more than one dimension and when the 

intercorrelations between dimensions increased. Although the current study did not identify 

individual item error, the results did parallel Finch and produced larger errors for the MDISC 

parameter under more complex test models with items loading onto at most two dimensions. 

 The results of item parameter recovery from Babcock 2011 study and the Chalmers and 

Flora 2014 showed that highly correlated dimensions produced poorly recovered a parameters. 

The current study showed that the increase in correlations did not have an impact on the recovery 

of both the MDISC and d parameters. Both study results were based on noncompensatory 

models whereas this study was based on compensatory models. This could account for the 

difference in the estimation of the a parameter and could be a subject for further investigation. 

 Examinee ability. One noted result was the recovered correlations in Dimension 3. This 

is an interesting result because the same number of items load onto each dimension. It would not 

be expected that the correlations for Dimension 3 would be that different from the other 

correlations between dimensions. At this point, no conclusion has been made as to why the 

correlations for this dimension were so low. Further investigations need to be done to see if the 

increased number of dimensions produce smaller correlations overall. 
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 The increase in correlations brings the model closer and closer to the unidimensional 

model, and therefore, the increase in the recovery correlation from one model to the next is not 

surprising. The increase in recovery correlations might be attributed to the fact that there is more 

information available to produce an ability estimate under Model 2 than there was in Model 1. 

Model 2 uses 27 items per dimension as compared to Model 1 in which there were only 18 items 

per dimension. On the same comparison, when compared to the other two models, Model 3 had 

more items per dimension with 32 items loading onto each dimension. Due to the increased data 

available, the correlations between the true ability levels values and the recovered ability 

estimates is the greatest for Model 3. Condition 12 had the highest correlation between 

dimensions with a correlation of .9 and produced the highest of all recovery correlations. This 

could be due to the fact that not only were there more items per dimension, the correlation was 

so high that it was similar to a unidimensional test were all items load onto a single factor.  

The ADQ estimation technique always produced the highest correlation between the true 

ability values and the recovered ability estimates. The results also showed that as the number of 

items increased and the correlation between dimensions increased, the ability of both estimation 

techniques to recover true values also increased. The final recommendation would be to use the 

ADQ estimation technique with as many items as possible per dimension. Even though the 

results showed the highest correlations with the most complex models, the recommendation 

should not imply that the model must be complex with multiple items loading onto multiple 

dimension, but it is to suggest that the more information available to estimate the examinees 

ability the better. The recommendation is also mirrored in the results of the number of items per 

dimension investigation. As the number of items increased, the capability to recover ability 

estimates also increased. One caveat, however, is when the assessments are used for high stakes 
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purposes. When the test measures three dimensions, the results tend to suggest that practitioners 

should use at least 10 items per dimension because anything less than that does not produce 

accurate results.  

The ability estimates recovery for the current study produced comparable results to those 

seen in previous research. The study design of de la Torre and Patz (2005) was similar to the 

design of this study. While the current study did not increase the number of abilities and used 

slightly different values for the correlation between the dimensions, the overall results were the 

same. Both studies found that as the number of items increased, so too did the correlations 

between the true and recovered ability estimates. The highest correlations found in de la Torre 

and Patz (2005) were in the condition with five dimensions and interdimensional correlations of 

0.9. This results is synonymous with the results of this study where the highest correlations were 

also found in the condition with interdimensional correlations of 0.9. 

Both de la Torre (2009) and Wang, Chen and Cheng (2004) observed that as the test 

length increased and the correlation between dimensions increased, the recovery of examinee 

abilities also increased. Furthermore, Wang, Chen and Cheng (2004) found that four to nine 

items per dimension produced unreliable results. The same conclusion was obtained in the 

current study where the increase in interdimensional correlations increased the correlations 

between true examinee ability and recovered examinee ability. Additionally, the current study 

also showed that less than 14 items per dimensions produced lower recovery correlations for all 

estimation techniques.  

Overall software comparison. IRTPRO 3 and Mplus 7 have two different user interfaces. 

IRTPRO 3 utilizes both a point and click interface as well as allowing users to write syntax to 

run models. With Mplus 7, users can only specify models by writing syntax.  The ability to write 
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syntax is a plus for both software systems because it allows users to specify the exact model 

needed as well as allowing for easy updating or changing of models. The point and click 

interface makes it less intimidating for a person who might not have a great deal of background 

in programming or writing syntax. Although the syntax for Mplus 7 is not complicated and is 

very straight forward, users that are not familiar with writing syntax may not appreciate the 

power of syntax to make models.  Nonetheless, the more user friendly interface of IRTPRO 3 

does not make IRTPRO 3 the better program in the ease of use category. It would be expected 

that the target audience of both software programs would have been exposed to writing syntax in 

some form and therefore having the point and click interface of IRTPRO 3 is not an inherit 

benefit. IRTPRO 3 could be beneficial as an introduction to item analysis when trying to explain 

an overview of how the analysis works to those that are not interested in the background 

calculations.  

Mplus 7 does do a better job in communicating program errors. If the model does not run, 

Mplus 7 does provide information as to where the error occurred. When errors occur in IRTPRO 

3, it displayed as an unknown error. The unknown error received in the analysis could be 

attributed to the fact that the error did not trigger any known error codes in the program; 

however, the only errors that were received in IRTPRO 3 were unknown errors so no further 

comparisons could be made. The lack of error explanation can possibly frustrate practitioners 

who again might be relying on a single dataset to run analyses and would therefore be left with 

no suggested direction. Both programs ran rather efficiently. The Bayes estimation took the 

longest to run out of all five programs. Be that as it may, in the most complex models with the 

largest number of examinees, the increased time it took to run the model in comparison with the 

other estimation techniques was negligible.  
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IRTPRO 3 has the ability to run unidimensional and multidimensional models as well as 

1PL, 2PL, 3PL, and partial credit models. Mplus 7 can also run both unidimensional and 

multidimensional models, however some studies have shown that it has difficulty estimating the 

pseudo-guessing (c) parameter (Finch, 2010; Tate, 2003).  Additionally, newer versions of Mplus 

produce both factor loadings and thresholds as well as item difficulty and discrimination and 

therefore no converting is necessary. Both software programs can run simulations and can 

produce graphics for items and tests. Mplus 7 can also be used to run both confirmatory factor 

analysis and exploratory factor analysis. IRTPRO 3 cannot run these analyses and therefore the 

user must know a priori which items load onto which dimensions when modeling a 

multidimensional test. Not being able to run an EFA indicates that IRTPRO 3 must be used in 

conjunction with another software tool that has the ability to do such. 

The ability of IRTPRO 3 to run a variety of models and even different models in different 

test sections makes it far superior to Mplus 7 in modeling capabilities.  The ability of Mplus 7 to 

run both exploratory factor analysis and confirmatory factor analysis provides benefits to 

practitioners who want to use or can only afford to purchase one software application. Given 

such, the intended use of the software and the needs of the testing program have to be factored in 

when deciding which is the best software. Figure 20 provides a visual comparison of each 

software program as well as other information. 
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Table 15.  

IRT Software comparison 

 IRTPRO 3 Mplus 7 

Ability to write syntax yes yes 

Point and click user interface yes no 

1PL models yes yes 

2PL models yes yes 

3PL models yes yes 

Exploratory factor analysis no yes 

Confirmatory factor analysis no yes 

Provides item parameters  yes Yes, but must convert 

Provides examinee ability yes yes 

Graphics yes yes 

 

Overall estimation comparison. The WLSMV estimation technique was shown to have 

issues with convergence under the default settings. When the WLSMV converged, it produced 

moderately stable estimates in most conditions. One noticeable difference was when the 

WLSMV estimator was used to recover true examinee abilities. In this instance, not only did the 

WLSMV technique have an issue with convergence, it also produced a negative correlation in 

recovering true examinee abilities. As such, the WLSMV technique was not chosen in any part 

of this study for further investigation. The Mplus syntax can be amended to help with 

convergence issues when using the WLSMV estimator and research has shown that when the 

model converges, the WLSMV estimator preforms very well (Beauducel & Herzberg, 2006; 

Muthén, Du Toit, & Spisic, 1997; Yu, 2002). Due to the results seen in this investigation, it 

would be advisable to choose another estimation technique over the WLSMV estimation 

technique in the practical setting if the practitioner is not well versed in Mplus syntax and is not 

confident in their ability to modify syntax when models do not converge. 
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Depending on the test in question, a practitioner might have limited data access needed to 

calculate examinee ability and item parameters. In the case of WLSMV, this is an issue when the 

file that the practitioner has does not converge when using that estimation technique. The 

WLSMV estimations techniques inability to converge was even seen at the larger sample sizes. 

If the WLSMV estimation technique does not converge, then the practitioner will have 

absolutely no data to use and thus make any item analyses irrelevant.  

The Bayes estimation technique, on the other hand, did a suitable job in recovering both 

item parameter estimates as well as ability estimates. Even though it did not perform as well as 

the other estimation techniques studied, the results were relatively close to the true values. When 

using Bayesian estimation in Mplus 7, the practitioner has the ability to specify the required 

number of imputations. The more imputations requested, the longer it takes for the program to 

run. The increased run time is a possible limitation of this technique, but, the limitation can be 

mitigated by changing the number of imputations. Additionally, the Bayes estimation technique 

produced fairly sensible estimates when sample sizes were on the smaller side. For these reasons, 

practitioners who choose Mplus 7 might want to use the Bayes estimation technique for all item 

response theory analyses. 

For IRTRPO 3, the BA estimation technique appears to be the inferior of the three 

techniques studied. BA was selected as the inferior due to the lack of estimation results. When 

the BA estimation technique was used with models that had more than one dimension loading 

onto an item, no results were given. The software would only produce a message that stated there 

was an unknown error. Nonetheless, when a simple between-item structure was used, the BA 

estimation technique performed admirably. Practitioners using this estimation technique would 
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be limited to simple test structures. IRTPRO 3, however, does provide the ability to use other 

estimation techniques in the presence of more complex models.  

The ADQ estimation technique did not produce any errors in any of the simulation 

conditions. The recovery results varied the most out of all estimation techniques. A good 

example of this was in the identification of an adequate sample size. Although the ADQ 

estimation technique converged, the RMSE varied significantly depending on the number of 

examinees. It would be understandable for the RMSE to decrease greatly as the number of 

examines increased; however, this was not the case. The RMSE both increased and decreased as 

the number of examinees increased. The ADQ estimation technique did show to be the best 

technique when it came to recovering examinee abilities. The correlations for ADQ were 

consistently higher than that of the Bayes estimation technique.  

As stated previously, the literature suggested the ADQ estimation technique works better 

in more complex models and models with higher dimensions (Cai, Thissen, & du Toit, 2015a; 

Schilling & Bock, 2005). A few of the conditions in the item parameter recovery section of the 

study were rerun using the ADQ estimation technique. The RMSE for the ADQ estimation 

technique was not noticeably smaller than that of the other techniques explored.  

Finally, the MHRM estimation technique also suffered from issues that other estimations 

techniques did not encounter. One noticeable issue was that of ability recovery. Of all estimation 

techniques, MHRM unfailingly produced the lowest overall correlations for each condition and 

in each dimension. Not only were the correlations the lowest out of all five estimation 

techniques, the correlations were consistently in the low to moderate level between 0.35 and 0.48 

while all other estimation techniques were in the 0.60 range. 
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Given the benefits and issues seen in the IRTPRO 3 estimation techniques, it is hard to 

identify one overall estimation technique that should be used in all situations. If a practitioner is 

using a simple structure and only wants to use one estimation technique for both item parameter 

and examinee ability analysis, the BA estimation technique would be the best. If a practitioner 

has any complexity in the model and is only interested in the item parameters, it would be 

beneficial to use the MHRM technique. Finally, if the practitioner is interested in examinee 

ability alone, the ADQ technique would be the best.  

Overall, the capability of IRTPRO 3 to use different analyses depending on the desired 

information, the capacity to produce item parameters without the need to convert from lambdas 

and thresholds to discrimination and difficulties, and the ability to model a variety of IRT test 

structures ultimately gives IRTPRO 3 a slight advantage over Mplus 7.  

Limitations. Due to the limited resources available for this study, there are a few 

limitations that should be acknowledge. Although they might not have a profound impact on the 

overall results, they could potentially impact future research. The limitations include the number 

of repetitions, the models used, and how the estimation techniques were run.  

As stated in numerous instances, the intended audience for this inquiry was practitioners 

that have might have access to limited amounts of data. The current study was limited to only 

three replications in order to imitate what may perhaps be encountered in the real world. Even 

though this was done with the practitioner in mind, it is also a limitation. The limited number of 

data sets might have masked an issue that could be seen with more data or it could have 

pinpointed a difference that seemed rather large though would appear smaller in the presence of 

multiple samples.  
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Another possible limitation is the models that were used in the analysis. Two complex 

and one simple three dimensional models were used in this study. While these models were of 

interest to the researcher, they are, by far, not the only models available. The inclusion of 

different types of models as well as the inclusion of a variety of dimensions could help illustrate 

other issues or benefits related to the recovery of item parameters and ability estimates. 

Each estimation technique could have been run in a variety of ways. For instance, the 

number of quadrature points were selected based on research, but, the number of quadrature 

points could have been changed. The research indicates that two to three quadrature points 

should be used per dimension, and with a three-dimensional test, the number of quadrature points 

recommended could range from six to nine. The selection of different quadrature points for the 

BA and ADQ estimation technique could have changed the results of the study.  

Future research. No study could possibly address all questions related to a single topic. 

Given the limitations elucidated in the previous section, the direction of the future research 

should be such that addresses the limitations. Future research could provide practitioners with a 

more robust assessment of the estimation techniques investigated in this study as well as other 

estimation techniques available for item parameter analyses. The future directions should relate 

to the number of repetitions, estimation models, other software programs, and the use of real 

data. 

As stated in the limitation section, one important limitation is the use of only three 

replications. Future research should involve more replications in order to better demonstrate the 

abilities of each estimation technique. The increase in replications could be very beneficial in 

identifying an adequate sample size. The analysis conducted in the current study showed that the 

ADQ estimation technique was very unstable; though, more replications could smooth out the 
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results of the estimation technique and could be used to make more concrete suggestions as to 

the number of examinees needed. Additionally, the increase in repetitions could be helpful in 

understanding how the number of items per dimension impacts the ability to recover examinee 

estimates. Again, real world scenarios were the bases of the current analysis. However, a more in 

depth simulation study could help inform practice in a different way.  

 Future research should also center around the models used and the software program 

employed. At the conclusion of this study, Scientific Software International released IRTPRO 4. 

The new software updates might change some of the results seen in the current investigation. 

Additionally, other software such as SAS/STATA®, R (2013) and Stata 14 (StataCorp 2015), 

provide the opportunity to use different models including 1PL, 3PL, graded response, and 

compensatory models as well as other test designs.  

Moreover, the inclusion of real-world data could shape the direction of future research. 

All results of the current exploration focused solely on simulated data. The inclusion of real 

world data could provide practitioners as well as researchers with valuable information. Studies 

could incorporate the use of EFA to identify the items and which dimensions they map onto, as 

well as a follow up item analyses to identify item parameters and ability estimations. 

Finally, this research could be expanded to the realm of practice based professional 

development. Practice based professional development is focused on the development of the 

practitioner’s understandings of the skills needed for an effective education practice as opposed 

to the knowledge of the practice (Harris et al., 2012). The current study could help shape district 

and large school assessment designers understanding of the practical difference between IRT and 

factor analysis estimation procedures for multidimensional test. The information presented in this 

study as well as other information related to test design can be developed into professional 
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learning activities that could help practitioners incorporate better assessments at all levels of 

education. 

Though there are limitations in the study and future directions could extend the 

knowledge available on the given topic, the current study contributes to the realm of item 

response theory. The current study provides educational professions with necessary information 

to make informed decisions as to which analyses and estimation techniques to use under a 

variety of circumstances.  
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APPENDICES 

Appendix A Item Parameters for item parameter recovery 

 

Item parameters for the between and within-item multidimensional IRT model  

Model 2 item parameter recovery 

Item 

number 

a1 a2 a3 d 

1 0.04 0.00 0.00 0.08 

2 0.02 0.00 0.00 -0.09 

3 0.15 0.00 0.00 -0.29 

4 0.09 0.00 0.00 -0.29 

5 0.16 0.00 0.33 -0.22 

6 0.16 0.00 0.67 -0.31 

7 0.20 0.00 0.89 -0.63 

8 0.12 0.00 0.51 0.40 

9 0.12 0.04 0.00 0.04 

10 0.06 0.05 0.00 0.05 

11 0.47 0.14 0.00 0.45 

12 0.63 0.02 0.00 -0.14 

13 0.00 0.42 0.00 0.23 

14 0.00 0.19 0.00 -1.02 

15 0.00 0.51 0.00 0.23 

16 0.00 0.55 0.00 -0.16 

17 0.00 0.05 0.05 -0.16 

18 0.00 0.16 0.12 0.31 

19 0.00 0.18 0.06 0.71 

20 0.00 0.22 0.05 0.03 

21 0.00 0.00 0.05 0.38 

22 0.00 0.00 0.11 -0.12 

23 0.00 0.00 0.16 -0.17 

24 0.00 0.00 0.12 -1.07 
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Item parameters for the complex between and within-item multidimensional IRT model  

Model 3 item parameter recovery 

Item 

number 

a1 a2 a3 d 

1 0.04 0.00 0.00 0.08 

2 0.02 0.00 0.00 -0.09 

3 0.15 0.00 0.00 -0.29 

4 0.19 0.03 0.00 -0.29 

5 0.16 0.10 0.00 -0.22 

6 0.16 0.16 0.67 -0.31 

7 0.20 0.03 0.00 -0.63 

8 0.12 0.12 0.51 0.40 

9 0.00 0.06 0.00 0.04 

10 0.00 0.47 0.00 0.05 

11 0.00 0.63 0.00 0.45 

12 0.00 0.04 0.00 -0.14 

13 0.00 0.03 0.11 0.23 

14 1.09 0.02 0.17 -1.02 

15 0.00 0.01 0.08 0.23 

16 0.55 0.00 0.05 -0.16 

17 0.00 0.00 0.85 -0.16 

18 0.00 0.00 0.54 0.31 

19 0.00 0.00 0.56 0.71 

20 0.00 0.00 0.39 0.03 

21 0.05 0.00 0.06 0.38 

22 0.11 0.27 0.11 -0.12 

23 0.16 0.00 0.15 -0.17 

24 0.12 0.18 0.01 -1.07 
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Appendix B Item Parameters for item parameter recovery 

 

Item parameters for the between-item multidimensional IRT model 

 Model 1 ability estimation recovery 

Item 

Number 

a1 a2 a3 d Item 

Number 

a1 a2 a3 d 

1 0.50 0.00 0.00 0.08 28 0.00 0.46 0.00 -0.49 

2 0.27 0.00 0.00 -0.09 29 0.00 0.38 0.00 -0.36 

3 0.58 0.00 0.00 -0.29 30 0.00 1.23 0.00 -0.73 

4 0.67 0.00 0.00 -0.29 31 0.00 0.98 0.00 -0.83 

5 0.33 0.00 0.00 -0.22 32 0.00 0.66 0.00 0.19 

6 0.67 0.00 0.00 -0.31 33 0.00 0.76 0.00 -0.22 

7 0.89 0.00 0.00 -0.63 34 0.00 0.71 0.00 -0.20 

8 0.51 0.00 0.00 0.40 35 0.00 0.68 0.00 0.43 

9 0.60 0.00 0.00 0.04 36 0.00 0.93 0.00 -0.16 

10 0.54 0.00 0.00 0.05 37 0.00 0.00 0.59 0.55 

11 0.47 0.00 0.00 0.45 38 0.00 0.00 0.53 -0.03 

12 0.63 0.00 0.00 -0.14 39 0.00 0.00 0.54 -0.17 

13 0.42 0.00 0.00 0.23 40 0.00 0.00 0.29 -0.39 

14 1.09 0.00 0.00 -1.02 41 0.00 0.00 0.61 -0.78 

15 0.51 0.00 0.00 0.23 42 0.00 0.00 0.81 -1.67 

16 0.55 0.00 0.00 -0.16 43 0.00 0.00 0.39 -0.47 

17 0.85 0.00 0.00 -0.16 44 0.00 0.00 0.67 -0.26 

18 0.54 0.00 0.00 0.31 45 0.00 0.00 0.68 -0.86 

19 0.00 0.37 0.00 -0.14 46 0.00 0.00 0.29 -0.10 

20 0.00 0.73 0.00 0.29 47 0.00 0.00 0.32 -0.24 

21 0.00 0.91 0.00 -0.21 48 0.00 0.00 0.54 -0.52 

22 0.00 0.35 0.00 0.16 49 0.00 0.00 0.79 0.78 

23 0.00 0.30 0.00 0.01 50 0.00 0.00 1.11 -0.19 

24 0.00 0.65 0.00 0.06 51 0.00 0.00 0.69 0.44 

25 0.00 0.52 0.00 -0.08 52 0.00 0.00 1.73 -1.62 

26 0.00 0.31 0.00 -0.26 53 0.00 0.00 0.80 0.40 
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27 0.00 0.64 0.00 -0.43 54 0.00 0.00 0.91 -0.32 

 

 

 

 

 

 

Item Parameters for the between and within-item multidimensional IRT model  

Model 2 ability estimation recovery 

Item 

Number 

a1 a2 a3 d Item 

Number 

a1 a2 a3 d 

1 0.50 0.00 0.00 0.08 28 0.54 0.46 0.00 -0.49 

2 0.27 0.00 0.00 -0.09 29 0.47 0.38 0.00 -0.36 

3 0.58 0.00 0.00 -0.29 30 0.63 1.23 0.00 -0.73 

4 0.67 0.00 0.00 -0.29 31 0.42 0.98 0.00 -0.83 

5 0.33 0.00 0.00 -0.22 32 1.09 0.66 0.00 0.19 

6 0.67 0.00 0.00 -0.31 33 0.51 0.76 0.00 -0.22 

7 0.89 0.00 0.00 -0.63 34 0.55 0.71 0.00 -0.20 

8 0.51 0.00 0.00 0.40 35 0.85 0.68 0.00 0.43 

9 0.60 0.00 0.00 0.04 36 0.54 0.93 0.00 -0.16 

10 0.00 0.37 0.00 0.05 37 0.42 0.00 0.93 0.55 

11 0.00 0.73 0.00 0.45 38 1.09 0.00 0.58 -0.03 

12 0.00 0.91 0.00 -0.14 39 0.51 0.00 1.53 -0.17 

13 0.00 0.35 0.00 0.23 40 0.55 0.00 0.69 -0.39 

14 0.00 0.30 0.00 -1.02 41 0.85 0.00 0.79 -0.78 

15 0.00 0.65 0.00 0.23 42 0.54 0.00 1.06 -1.67 

16 0.00 0.52 0.00 -0.16 43 0.56 0.00 0.75 -0.47 

17 0.00 0.31 0.00 -0.16 44 0.39 0.00 0.32 -0.26 

18 0.00 0.64 0.00 0.31 45 0.65 0.00 0.54 -0.86 

19 0.00 0.00 0.59 -0.14 46 0.00 0.65 0.29 -0.10 

20 0.00 0.00 0.53 0.29 47 0.00 0.27 0.32 -0.24 

21 0.00 0.00 0.54 -0.21 48 0.00 0.65 0.54 -0.52 

22 0.00 0.00 0.29 0.16 49 0.00 0.18 0.79 0.78 

23 0.00 0.00 0.61 0.01 50 0.00 0.98 1.11 -0.19 

24 0.00 0.00 0.81 0.06 51 0.00 0.66 0.69 0.44 

25 0.00 0.00 0.39 -0.08 52 0.00 0.76 1.73 -1.62 

26 0.00 0.00 0.67 -0.26 53 0.00 0.71 0.80 0.40 

27 0.00 0.00 0.68 -0.43 54 0.00 0.68 0.91 -0.32 
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Item parameters for the complex between and within-item multidimensional IRT model  

Model 3 ability estimation recovery 

Item 

Number 

a1 a2 a3 d Item 

Number 

a1 a2 a3 d 

1 0.50 0.00 0.00 0.08 28 0.54 0.46 0.00 -0.49 

2 0.27 0.00 0.00 -0.09 29 0.47 0.38 0.00 -0.36 

3 0.58 0.00 0.00 -0.29 30 0.63 1.23 0.00 -0.73 

4 0.67 0.00 0.00 -0.29 31 0.42 0.98 0.00 -0.83 

5 0.33 0.00 0.00 -0.22 32 1.09 0.66 0.71 0.19 

6 0.67 0.00 0.00 -0.31 33 0.51 0.76 1.23 -0.22 

7 0.89 0.00 0.00 -0.63 34 0.55 0.71 0.98 -0.20 

8 0.51 0.00 0.00 0.40 35 0.85 0.68 0.66 0.43 

9 0.60 0.00 0.00 0.04 36 0.54 0.93 0.76 -0.16 

10 0.00 0.37 0.00 0.05 37 0.42 0.00 0.93 0.55 

11 0.00 0.73 0.00 0.45 38 1.09 0.00 0.58 -0.03 

12 0.00 0.91 0.00 -0.14 39 0.51 0.00 1.53 -0.17 

13 0.00 0.35 0.00 0.23 40 0.55 0.00 0.69 -0.39 

14 0.00 0.30 0.00 -1.02 41 0.85 0.65 0.79 -0.78 

15 0.00 0.65 0.00 0.23 42 0.54 0.52 1.06 -1.67 

16 0.00 0.52 0.00 -0.16 43 0.56 0.31 0.75 -0.47 

17 0.00 0.31 0.00 -0.16 44 0.39 0.64 0.32 -0.26 

18 0.00 0.64 0.00 0.31 45 0.65 0.46 0.54 -0.86 

19 0.00 0.00 0.59 -0.14 46 0.00 0.65 0.29 -0.10 

20 0.00 0.00 0.53 0.29 47 0.00 0.27 0.32 -0.24 

21 0.00 0.00 0.54 -0.21 48 0.00 0.65 0.54 -0.52 

22 0.00 0.00 0.29 0.16 49 0.00 0.18 0.79 0.78 

23 0.00 0.00 0.61 0.01 50 0.37 0.98 1.11 -0.19 

24 0.00 0.00 0.81 0.06 51 0.73 0.66 0.69 0.44 

25 0.00 0.00 0.39 -0.08 52 0.91 0.76 1.73 -1.62 

26 0.00 0.00 0.67 -0.26 53 0.35 0.71 0.80 0.40 

27 0.00 0.00 0.68 -0.43 54 0.30 0.68 0.91 -0.32 
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